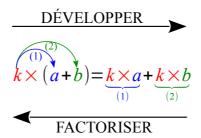
<u>I. Distributivité simple</u>

1. Formule(s)

• La formule de base de la distributivité est, k, a et b étant trois nombres quelconques :



- Développer, factoriser
 - ▶ La *forme* de gauche est la <u>forme factorisée</u>, où le <u>facteur commun</u> <u>k</u> est <u>en facteur</u>. La forme factorisée est un produit (produit de <u>k</u> par une somme)
 - ▶ La forme de droite est la **forme développée**, on a distribué *k*. La forme développée est une somme (somme de deux produits, *k* apparaissant dans chaque produit).
 - <u>Développer</u> consiste à transformer un produit en somme.
 - Factoriser consiste à transformer une somme en produit.
- Remarque :
 - ▶ En remplaçant b par -b, on obtient une deuxième formule : $k \times (a-b) = k \times a k \times b$ (il n'est donc pas nécessaire d'apprendre cette deuxième formule)

2. Exemples

•
$$9\left(n+\frac{2}{5}\right)$$

Ici, $k=9$, $a=n$ et $b=\frac{2}{5}$.

$$9\left(n+\frac{2}{5}\right)$$

$$=9\times n+9\times \frac{2}{5}$$

$$=9 n+\frac{18}{5}$$
 (on n'oublie pas de réduire)

•
$$5(3-x)-x(x+2)$$

Ici, on ajoute deux formes factorisées : $\frac{1}{2}$ = $\frac{1}{2}$ et $\frac{1}{2}$ = $\frac{1}{2}$

$$k_1 = 5$$
, $a_1 = 3$ et $b_1 = -x$,
et $k_2 = -x$, $a_2 = x$ et $b_2 = 2$.

$$5(3-x)-x(x+2)$$

$$=5\times3-5\times x-x\times x-x\times2$$

$$=15-5x-x^2-2x$$

$$=-x^2-7x+15$$

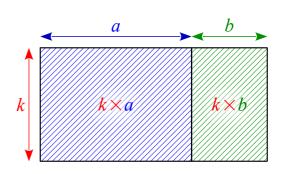
(on réduit et on ordonne : d'abord les termes en x^2 , puis les termes en x, puis les nombres)

3. Point de vue géométrique

Le grand rectangle a pour longueur (a+b) et pour largeur k, son aire est donc $k \times (a+b)$.

Les aires des rectangles bleu et vert sont $k \times a$ et $k \times b$.

La figure illustre donc que $k \times (a+b) = k \times a + k \times b$.



II. Double distributivité

1. Formule(s)

• a, b, c et d sont quatre nombres quelconques.

$$(a+b)(c+d) = \underbrace{a \times c}_{(1)} + \underbrace{a \times d}_{(2)} + \underbrace{b \times c}_{(3)} + \underbrace{b \times d}_{(4)}$$

- Remarques : (ces quatre formules ne sont pas à connaître)
 - ▶ Si on remplace b par -b, on obtient : (a-b)(c+d)=ac+ad-bc-bd
 - ▶ Si on remplace d par -d, on obtient : (a+b)(c-d)=ac-ad+bc-bd
 - ▶ Si on remplace b par -b et d par -d, on obtient : (a-b)(c-d)=ac-ad-bc+bd

2. Exemples

•
$$(x+7)(5-x)$$

Ici, a=x, b=7, c=5 et d=-x.

$$(x+7)(5-x)$$

$$=x\times5+x\times(-x)+7\times5+7\times(-x)$$

$$=5x-x^2+35-7x$$

$$=-x^2-2x+35$$

•
$$-6(x-2)(3x+5)$$

On laisse k=-6 en facteur, et on développe en considérant que a=x, b=-2, c=3xet d=5.

$$-6(x-2)(3x+5)$$

$$= -6[x \times 3x + x \times 5 - 2 \times 3x - 2 \times 5]$$

$$=-6[3x^2+5x-6x-10]$$

$$=-6[3x^2-x-10]$$

$$=-6\times3 x^2-6\times(-x)-6\times(-10)$$

$$=-18x^2+6x+60$$

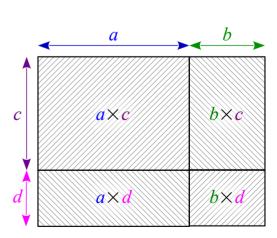
3. Point de vue géométrique

Le grand rectangle a pour longueur (a+b) et pour largeur (c+d), son aire est donc (a+b)(c+d).

Les aires des petits rectangles $a \times c$, $a \times d$, $b \times c$ et $b \times d$.

La figure illustre donc la formule :

$$(a+b)(c+d) = a \times c + a \times d + b \times c + b \times d.$$



4. Cas particuliers : les identités remarquables

- Il y a trois identités remarquables, une seule est réellement au programme (la 3^e), mais si vous les connaissez toutes, c'est mieux.
 - $(a+b)^2 = a^2 + 2ab + b^2$
 - $(a-b)^2 = a^2 2ab + b^2$
 - $(a+b)(a-b)=a^2-b^2$

$$(\triangle + \blacksquare)^2 = \triangle^2 + 2 \times \triangle \times \blacksquare + \blacksquare^2$$

$$(\triangle - \blacksquare)^2 = \triangle^2 - 2 \times \triangle \times \blacksquare + \blacksquare^2$$

$$\blacktriangleright (\blacktriangle + \blacksquare) (\blacktriangle - \blacksquare) = \blacktriangle^2 - \blacksquare^2$$

• Elles se démontrent facilement, nous l'avons fait en exercice

$$(a+b)^2 = (a+b)(a+b) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = (a-b)(a-b) = a^2 - ab - ab + b^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b)=a^2-ab+ab-b^2=a^2-b^2$$
.

- Elles permettent :
 - de développer plus rapidement certaines expressions,
 - de factoriser certaines expressions dans lesquelles on ne parvient pas à identifier un facteur commun
- Exemples de factorisations :

•
$$4x^2 - 49$$

Cette expression ressemble à la 3^e identité remarquable,

•
$$a^2 = 4x^2$$
 donne $a = 2x$,

•
$$b^2 = 49$$
 donne $b = 7$.

Alors
$$4x^2-49=a^2-b^2$$
,
donc $4x^2-49=(2x+1)(2x-1)$.

•
$$9x^2 - 12x + 4$$

Cette expression ressemble à la 2^e identité remarquable,

$$\rightarrow a^2 = 9x^2$$
 donne $a = 3x$,

$$b^2 = 4$$
 donne $b = 2$,

• on vérifie
$$2ab=2\times 3x\times 2=12x$$
.

Alors
$$9x^2-12x+4=a^2-2ab+b^2$$
,
donc $9x^2-12x+4=(3x-2)^2$.