<u> C. Puissances de 10</u>

1. Définition

* n est un nombre entier strictement positif (n>0).

r est l'exposant.
► exposant positif :
$$10^n = 10 \times ... \times 10 = 10 ... 0$$
 (se lit « 10 puissance n ») ou « 10 exposant n »).

- exposant négatif : $10^{-n} = \frac{1}{10^n} = 0.0 \dots 01$ (c'est l'inverse de 10^n).
- * Cas particuliers:
 - $\rightarrow 10^1 = 10.$
 - $10^{0}=1$
 - $\rightarrow 10^{-1} = \frac{1}{10}$.

2. Propriétés - formules

- * m et n sont des nombres entiers relatifs.
 - $10^{m} \times 10^{n} = 10^{m+n}$
 - $\rightarrow \frac{10^m}{10^n} = 10^{m-n}$.
- * Remarques:

$$\frac{10^{m}}{10^{n}} = 10^{m} \times \frac{1}{10^{n}} = 10^{m} \times 10^{-n} = 10^{m+(-n)} = 10^{m-n}.$$

▶ Si m = n, d'une part $\frac{10^m}{10^m} = 10^{m-m} = 10^0$ et d'autre part $\frac{10^m}{10^m} = 1$, on retrouve donc $10^0 = 1$.

3. Écriture scientifique

- * L'écriture scientifique (ou notation scientifique) est l'écriture de la forme $a \times 10^p$ (ou $-a \times 10^p$) avec p entier relatif et $1 \le a < 10$.
 - Exemples : $18000 = 1.8 \times 10^4$
 - $0.000052 = 5.2 \times 10^{-5}$
 - $367 \times 10^6 = 3,67 \times 10^8$ (attention à ne pas inverser le raisonnement...)

<u>I. Puissance entière d'un nombre relatif</u>

1. Définition

- * a est un nombre relatif et n un nombre entier strictement positif (n>0).
 - \blacktriangleright exposant positif: $a^n = a \times ... \times a$ (se lit « a puissance n »

ou « a exposant n »).

- rightharpoonup exposant négatif: $a^{-n} = \frac{1}{a^n} = \frac{1}{a \times a} = \frac{1}{a} \times ... \times \frac{1}{a}$ (c'est l'inverse de a^n).
- * Cas particuliers:
 - \rightarrow si n > 0, $0^n = 0$. Attention, 0^0 n'existe pas.
 - $\rightarrow a^1 =$.
 - \Rightarrow si $a \neq 0$, $a^0 = 1$.
 - ► si $a \neq 0$, $a^{-1} = \frac{1}{a}$ (c'est l'inverse de a).

2. Propriétés - formules

* Produit et quotient de puissances :

a est un nombre relatif non nul $(a \neq 0)$, m et n sont des nombres entiers relatifs.

- $\rightarrow a^m \times a^n = a^{m+n}$
- $\qquad \qquad \bullet \frac{a^m}{a^n} = a^{m-n}.$
- * Puissance d'un produit, d'un quotient :

a et b sont deux nombres relatifs non nuls $(a \neq 0 \text{ et } b \neq 0)$, n est un nombre entier relatif.

- $(a \times b)^n = (ab)^n = a^n \times b^n$
- $\blacktriangleright \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$.
- Exemples: $(ab)^2 = a^2 \times b^2$ $(ab)^3 = a^3 \times b^3$

 - $\bullet 20^3 = (2 \times 10)^3 = 2^3 \times 10^3 = 8 \times 1000 = 8000$
 - $\bullet 5^4 \times 2^4 = (5 \times 2)^4 = 10^4 = 10000$
 - $\cdot \frac{12^3}{6^3} = \left(\frac{12}{6}\right)^3 = 2^3 = 8$
 - $0.07^2 = \left(\frac{7}{100}\right)^2 = \frac{7^2}{100^2} = \frac{49}{10000} = 0.0049$