
<u>a.</u> Effectue les trois calculs précédents sur ta calculatrice et interprète les résultats. Il semble qu'on puisse écrire :

$$\cdot \frac{1}{10^{13}} = \frac{1}{10^{14}} = \frac{1}{10^{16}} = \frac{1}{10^{1$$

$$d'où 6 \times \frac{1}{10^{14}} = 6 \times , \text{ et } 4 \times \frac{1}{10^{16}} =$$

Il semble donc que 10^{-16} soit l'_____ de 10^{16}

<u>b.</u> Pour comprendre le choix de cette notation, complète le schéma suivant.

c. Complète les égalités.

•
$$\frac{1}{10^7} =$$
 • $\frac{1}{10^{56}} =$

Par définition, si *n* est un entier positif, $10^{-n} = \frac{1}{10^{-n}} = 0$,

- 2 Détermine les inverses des nombres suivants (écris les calculs sur ton cahier).
 - 10^{15} 10^{-12}
 - 5×10^{-3} $\frac{4}{10^{5}}$